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TOTAL ROTOR ISOLATION SYSTEM (TRIS)
D. R. Halwes
Bell Helicopter Textron Inc.

SUMMARY

Airframe vibrations can have an adverse effect on airframe 1life,
electronic equipment 1life, aircrew fatigue and comfort, and, in many cases,
helicopter performance. As a consequence, methods for reducing helicopter
vibration levels have been an important research area for many years.

Previous antiresonant isolation concepts developed to isolate the
fuselage from the main rotor oscillatory forces such as Kaman's DAVI, Boeing-
Vertol's IRIS, and Bell's nodal beam never achieved the Army's goals of less
than 0.05 g's vibration levels. In 1979, the Army funded a research program
that resulted in the development of a Total Rotor Isolation System by Bell
Helicopter Textron, Inc.

To determine the effectiveness of the Total Rotor Isolation System
(TRIS) in reducing helicopter vibrations, a flight verification study was
conducted at Bell's Flight Research Center in Arlington, Texas. The objective
was to demonstrate a 90% (or greater) isolation of the helicopter fuselage
from the forces and moments generated by the rotor hub at 4/rev, the blade
passage frequency, or 26.26 Hz in the case of the Bell 206LM. The flight test
was the final phase of a three-phase program performed by Bell under a NASA
Langley Research Center contract with funding by the U.S. Army Aerostructures
Directorate. The flight test data of the testbed aircraft indicate that the
program objectives have been surpassed. The 4/rev vibration levels at the
pilot's seat were suppressed below 0.056g throughout the transition flight
regime (from hover to forward flight) with its inherently high vibration
potential.

The results of flight tests to date indicate the vibration levels from
the rotor hub to the pilot's seat were reduced by 95%, and this was achieved



at a considerable weight savings over traditional antiresonant isolation
concepts. In addition, the TRIS installation was designed with a decoupled
control system and has shown a significant improvement in aircraft flying
qualities. The improvement was such that it permitted the trimmed aircraft to
be flown "hands-off" for a significant period of time, over 90 seconds. This
improvement in flying qualities was further investigated under BHTI IR&D. In
conclusion, the TRIS program and the flight tests have demonstrated a system
that greatly reduces vibration levels of a current-generation helicopter, the
Bell 206LM, while improving the flying qualities to a point where stability
augmentation is no longer a requirement.

INTRODUCTION

The vibrations inherent in helicopters cause many undesirable effects,
including helicopter crew fatigue, resuiting in decreased proficiency;
unacceptable passenger comfort; poor component and system equipment Tlives;
lower avionics reliability, resulting in increased operating cost; and, in the
case of severe vibrations, limited operational envelopes.

The Drive for Lower Vibration Levels

Vibration reduction has been a major goal of the rotary wing community
since the helicopter's inception. In the 1940s and 1950s, helicopters using
first-generation main-rotor-shaft disolation systems exceeded the MIL-SPEC
n/rev vibration levels of 0.15g, and many had vibration levels over 0.5g
during transition. During the 1960s, second-generation designs (with focal
pylons) were generally able to meet the 0.15¢ requirement in cruise flight,
but not during transition. In the 1970s, the military, recognizing the
adverse effects of vibrations and desiring a more stable weapons platform,
reduced the MIL-SPEC acceptable 1levels of the predominant rotor harmonic
(n/rev) g-levels from 0.15g at cruise speed to 0.05¢. The third-generation
isolation-type systems, including Boeing-Vertol's IRIS, Kaman's DAVI, and
Bell's nodal beam, were designed to meet this requirement, but failed. In
addition, the weight penalties imposed by these systems, or a combination




thereof, varied from 2% to 3% (more in some cases) of the helicopter's design
gross weight. Even the current state-of-the-art Army helicopters, Sikorsky's
UH-60 Blackhawk and McDonnell Douglas' AH-64 Apache, never met the 0.05¢g
vibration criterion during competition, and the criterion was later raised to
0.1g's.

The military was not alone in its demands for lower vibration levels.
Commercial operators, particularly those conducting long flights to offshore
0il rigs or ambulance runs, also demanded lower vibration levels in aircraft.
In addition, helicopter users have also demanded new objectives for high-speed
performance, higher payloads, improved maneuverability, and increased agility.
These new goals have led to new rotor designs, including rigid, articulated
or soft inplane with large hinge offsets, and teetering rotors with added hub
springs. A1l of these changes have tended to increase weight and generate
higher excitation shears and/or moments.

Programs Leading to TRIS

With the overall objective of meeting the Army's MIL-SPEC vibration
objective and reducing the helicopter's overall weight, the U.S. Army's
Aerostructures Directorate (then the Army's Structures Laboratory), located at
NASA's Langley Research Center, issued a request for proposal in 1979 for the
"analysis of the feasibility of a six-degree-of-freedom isolation system,"
which was phase one of this program. Under a NASA/Army contract, Bell
Helicopter Textron completed the analysis and was subsequently awarded a
follow-on contract for the "Design, Analysis, Fabrication, and Bench Testing
of a Total Main Rotor Isolation System," which is documented in Reference 1.
The results of the bench test were so promising that in 1984 a contract was
awarded for a program to install the system on a Bell Model 206LM helicopter
and then conduct ground and flight tests on the aircraft. This report covers
the results of that ground and flight test program.



Objective of TRIS Program

The objective of the program was to establish the requirements,
preliminary design, and verification procedures for TRIS at n/rev. Total main
rotor isolation at n/rev is considered to be such that there is no more than
5% response at any point on a theoretical rigid body fuselage due to any main
rotor shaft load at the blade passage frequency. This is equivalent to 95%
isolation or reduction in vibration levels. With this requirement of 95%
isolation on a rigid-body analytical model, it was the program objective to
demonstrate that 90% isolation could be achieved on a flexible fuselage in the
ground vibration test.

Approach

The TRIS isolation system discussed in this report extends the
previously limited isolation applications to all six degrees of freedom while
significantly reducing the weight penalty. The system achieves the objective
and can be universally applied to all rotor systems. The Liquid Inertia
Vibration Eliminator (LIVE) isolation element used in the system has
demonstrated a 98% isolation efficiency in laboratory tests. This element
also reduces weight by a significant factor, while providing a number of other
important advantages.

LIVE - THE BASIC ISOLATION UNIT OF TRIS

In 1972, research was begun at Bell on the use of the hydraulic cylinder
concept as an isolation system. Hydraulic fluid was used in two concentric
cylinders with differential areas to amplify the motion of a tungsten piston
being used as a tuning weight. This concept progressed to a very compact
system using a high-density, low-viscosity 1iquid (mercury) as both the
"hydraulic fluid" and the tuning weight. This system, called LIVE, is shown
in a cross-section schematic in Figure 1.
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Figure 1. LIVE System Internal Design



As shown in the schematic, an inner cylinder is bonded to an outer
~cylinder with a layer of elastomer, as in a coaxial bushing elastomer spring.
Cavities at the top and bottom are enclosed, creating reservoirs for the
"hydraulic fluid." The inner cylinder is attached to the transmission, and
the outer cylinder is attached to the fuselage. The hole or "tuning port"
through the inner cylinder connects the upper and lower reservoirs.

Theoretically, the mechanics of a classical pinned-pinned link 1is such
that only axial loads can be transmitted; no moments can be input through the
pinned ends. If a LIVE unit is mounted within a 1ink and tuned to isolate the
blade passage frequency, then no oscillatory 1loads at the blade passage
frequency (n/rev), in any direction, will be transmitted through the link. By
attaching the pylon to the fuselage with six pinned-pinned 1links employing
spherical bearings at each end and containing LIVE isolator units (in any
configuration that is statically stable in all six degrees of freedom), and
with no other attachments, every attachment 1link will isolate the blade
passage frequency and no oscillatory loads will be transmitted from any degree
of freedom at the hub.

A representative LIVE isolator 1link for the six degree-of-freedom
application is shown in the cross-section view of Figure 2. The finner
cylinder is attached to the pylon, and the outer cylinder is attached to the
fuselage. The two cylinders are bonded to the elastomer that fills the
annulus between them. This elastomer (working in shear) acts as a spring that
supports and reacts to the static and dynamic loads placed on the isolator.
Pressurized liquid mercury fills the center port in the inner cylinder and
both cavities at the ends of the isolators. No air space remains in the
isolators.

In operation, the 1iquid mercury oscillates within the LIVE units, and
isolation is achieved when the force due to pressure created by the motion of
the mercury cancels the spring force due to the displacement of the elastomer.
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Figure 2. Cut-Away View of Pinned-Pinned LIVE Link.
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This action is shown in Figure 3. By altering the spring rate and port
diameter, the LIVE units can be tuned to isolate the desired blade-passage
frequency. This six degree-of-freedom system has been named the Total Rotor
Isolation System, or TRIS.

DESCRIPTION OF TEST HELICOPTER

The baseline helicopter selected for the purpose of establishing by
analysis and test, the specific isolation system performance, risk, weight
jmpact, and system integration, was the Bell Model 206LM, serial number 45269
(Figure 4), a derivative of ther two-bladed Model 206L. The Model 206LM is an
1814-kg class turbine engine helicopter with a four-bladed, soft-in-plane,
flexbeam rotor system. An impedance controlled pylon isolation system had been
installed on the Model 206LM, and is referred to in this report as the Soft
Pylon Isolation System.

The isolation system selected for the baseline helicopter is a
modification of the six LIVE unit system using the LIVE units in a pinned-
pinned 1ink configuration.

Analysis

Predesign drawings were produced that showed a design installation of
the LIVE units with no modification to the transmission or the helicopter
fuselage structure. This installation can be seen in Figure 5. A NASTRAN
model of this geometry was constructed and tuned for optimum isolation, pylon
and mast modal placement, static motions, and drive shaft coupling angles.
The NASTRAN model had a rigid fuselage and the fully flexible pylon of the
206LM. The effective mass and inertia of the rotor at 4/rev from the
Myklestad analysis were included at the hub. This method gives very good
results at 4/rev, but will produce some error in natural frequency
determination at any other frequency. This work is detailed in Reference 1.
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Modifications for TRIS Installation
After the isolators were retuned (Reference 1) individually, they were
installed on the baseline helicopter. This required the following
modifications to the aircraft:
a. Removal of the existing pylon mounting system.
b. Installation of the six degree-of-freedom isolation system.

c. A cutout in the engine air intake cowling to clear aft LIVE units.

d. A relocation of transmission o0il filter/reservoir to the roof to
clear left aft LIVE unit.

e. Installation of different main rotor control bellcranks and supports
to decouple rotor inputs from pylon motions.

These changes are depicted in the following Bell drawings:

206-830-319 6D0OF M/R Pylon Installation
654-010-400 654 M/R Controls Installation
Engineering Order

6548-72 654 Main Rotor Controls Modification

The isolation system installation can be seen in Figures 6 through 10. A
complete drawing list and a parts breakdown are on file at the Arlington
F1ight Research Center.

Additional configuration items required for conversion from the Model 206L to
the Model 206LM are the following:

a. A fixed (nonmovable) horizontal stabilizer trim tab.

12
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b. A 206-801-301 cyclic mixing bellcrank in the main rotor control
system.

c. Horizontal stabilizer Tleading edge slats not previously used on the
206LM helicopter.

d. A 206LM landing gear assembly without crosstube fairings.
The above items were significant to the aircraft's handling qualities.
AIRCRAFT SHAKE TEST

The next phase of the program was to perform a shake test in each of the
six degrees of freedom. This test would determine the isolation efficiency
achieved and the natural frequencies and damping of the primary pylon modes
for comparison to the NASTRAN analysis. In addition, tests were required to
determine the frequency and damping parameters for calculations of the ground
and air resonance stability margins.

Since this test would expose the transmission to very high oscillatory
loads without rotation or torque applied to gears and bearings, a bench test
transmission was used to avoid damage to flightworthy parts. The swashplate
and pylon-mounted controls were simulated by the installation of Tead weights
at the proper locations to accurately represent the pylon dynamics.

Figure 6 shows photographs of the isolation system installation used
during the shake test.

Excitation
Three different systems were used for hub excitation. A single 1500-1b
capacity electromagnetic shaker was used for hub vertical, lateral, and

Tongitudinal shear inputs; two 1500-1b electromagnetic shakers were operated
out of phase for hub yaw moment input; and a rotary hydraulic shaker was used

18




for hub pitch and roll moment inputs. The excitation setup hardware can be
seen in Figures 11 through 14.

For each excitation degree-of-freedom, sweeps were made with the full
hub weight to determine the placement of pylon and fuselage natural
frequencies and the approximate shape and frequency placement of the isolation
valley. In addition, frequency dwells at various load levels with and without
the hub weight at 1/rev, 4/rev, and 8/rev were made to determine the isolation
efficiency and load linearity of the isolation system. Load levels up to 800
1b in shear and 5000 in-1b in moment were applied to the hub.

Instrumentation

The instrumentation used for the shake test are listed in Table I. The
accelerometer locations are indicated in Figure 15, and Figures 16 through 25
are photographs of their installations. An array of nine accelerometers at
the hub (Figure 26) and another array of six accelerometers near the fuselage
cg (Figure 27) were used to measure the input and response at each of the six
degrees of freedom. These accelerometer arrays were the primary transducers
used to determine the percentage of isolation achieved by TRIS and to
determine if the system met the 90% isolation criteria of the contract
statement of work. The accelerometer measurements were used to calculate the
percentage of isolation in the six degrees of freedom in the following manner:

a. For the translation directions, the response of the two
accelerometers, with their sensitive axis in the same direction,
were averaged to determine the response of the point halfway between
them.

b. For the rotational directions, the response of the two
accelerometers, with their sensitive axis in a plane perpendicular
to the axis of rotation, were subtracted, one from the other,
divided by the distance between them, and then converted to units of

19
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Table I.

DESCRIPTION

PILOT SEAT VERTICAL

Instrumentation List for Shake Test

VERTICAL

X

LATERAL

X

F/A

PITCH

x

ROLL

YAW

PILOT SEAT LATERAL

COPILOT SEAT VERTICAL

RIGHT AFT SEAT VERTICAL

AFT SEAT LATERAL

LEFT AFT SEAT VERTICAL

AFT

SEAT F/A

x| x| X]X| XX

x| x| X} X| X} X

x| X|X{X| X| X

x| X X} X] X{X| X

HUB

FORWARD VERTICAL

HUB

AFT VERTICAL

x| x] x{ x| x| X]|X}|X]X

x| x| x| X| X} X|X]|X

HUB

RIGHT VERTICAL

x

HUB

LEFT VERTICAL

HUB

CENTERLINE VERTICAL

HUB

CENTERLINE F/A
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Figure 17.

OF POCR

Co-pilot Seat Accelerometer Location for Shake Test
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Aft Cabin Seat Vertical Accelerometer

Figure 18.
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OF PCOR

Accelerometers Used to Define CG Response

Figure 20.
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deg/s2. This calculation yields the rotational response of the
structure halfway between the two accelerometers.

These calculations were performed by computer on both the sine and
cosine components of the response so that correct phase and magnitude were
maintained between the two accelerometers. In addition to the above
accelerometers, accelerometers were located at each of the crew seats, each of
the aft passenger seat locations, the elevator, and the 90° tailrotor gearbox.

Transfer Functions

Transfer functions were acquired on all accelerometers for each degree
of freedom. These transfer functions were used with a Bell modal analysis
computer program to define the natural frequencies of the pylon and the
fuselage. A summary of the natural frequencies is given in Table II.

Mode shapes of the pylon pitch and roll modes were dgenerated to
determine the waterline of the nodes on the transmission. These transmission
node locations had to be determined to ensure that pylon control coupling
could not cause an instability (see discussion under Pylon Control Coupling,
page 12).

The major transfer functions (all seat and cg locations) are presented
in Appendix A, Figures Al through A53. These plots show that the isolation
valley at 4/rev (26.3 Hz) occurs in each accelerometer, and for each
excitation degree of freedom. Table II shows good frequency separation
between 4/rev and all pylon and most fuselage modes, although for this project
no attempt was made to change the fuselage modes from the standard 206L
fuselage.
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Table II. Natural Frequencies of TRIS Installation
on 206LM

PYLON PITCH

PYLON ROLL

TAIL BOOM LATERAL

TAIL BOOM VERTICAL 5.82
TAIL BOOM TORSIONAL 24.0
TRANSMISSION VERTICAL 13.8
TRANSMISSION LATERAL 16.2
TRANSMISSION FORE/AFT 19.1
TRANSMISSION YAW 18.3
SECOND FUSELAGE VERTICAL 21.4
SECOND FUSELAGE LATERAL 20.2
FORE/AFT MAST BENDING 32.1
LATERAL MAST BENDING 34.6
ELEVATOR VERTICAL BENDING 15.2
VERTICAL FIN LATERAL BENDING 31.8

39



4/Rev Forced Response

For a more accurate measurement of the TRIS response at 4/rev, forced
response data were acquired by exciting the aircraft with a constant 4/rev
sine wave. This part of the test was performed two ways: one, with no hub
weight so that the hub and airframe response would equal the inflight response
for the same hub load measured between the rotor hub and the top of the mast;
and two, with a 4/rev impedance hub mass so the responses would compare to the
NASTRAN model. By measuring the hub response in g's or deg/s2 and ratioing it
to the cg response in the same units, a measure of the isolation systems
transmissibility was calculated. The 4/rev forced response data for the
maximum hub load from each accelerometer located at the hub, cg, and cabin
seats are presented in Table III. A broad range of hub loads in each degree
of freedom was measured to determine linearity. The ratio of hub load to
accelerometer response was calculated from these data and is shown in Table
Iv.

Hub and fuselage cg response data from these tables are plotted in
Figures 28 through 39 for each degree of freedom. The cg response scale is
one-tenth that of the hub response scale. This dual scale was selected in
order to show at a glance whether or not the 90% isolation criterion had been
met. If the curve for the cg response falls below the curve for the hub
response, that degree of freedom achieved 90% isolation; but if the cg curve
is above the hub curve, then the 90% isolation criterion was not achieved.
These plots show that all responses met the 90% isolation criterion with the
exception of the cg fore/aft response to a hub fore/aft shear at low force
levels, although at high force levels well over 90% isolation was achieved.

It was found during the detailed data analysis after the test that one of
the hub vertical accelerometers used to calculate hub rotational roll response
was not working properly during the roll excitation test. For this reason,
hub roll was calculated with the data from only one accelerometer; the other
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Table III.

Forced Response at 4/Rev for Maximum Hub Load

PILOT SEAT VERTICAL MAG 0.0047 0.0095 0.0034
86.71 14.44
PILOT SEAT LATERAL MAG 0.0188 0.0195 0.0075 0.0065 0.0204 | 0.0150
PHASE | -158.27 -36.0 -16.68 | -117.10 ] -167.25 | -133.10
ICO-PILOT SEAT VERTICAL MAG 0.0089 0.0197 0.0154 0.0127 0.0115 0.0102
PHASE { -6.71 100.15 111.73 91.62 21.65 -11.73
}RIGHT AFT SEAT VERTICAL MAG 0.0855 0.0135 0.0242 0.0345 0.0018 | 0.0027
I PHASE 36.55 119.62 40.10 7.90 -132.73 68.29
IAFT SEAT LATERAL MAG 0.0079 0.0085 0.0040 0.0005 0.0140 | 0.0041 I
I PHASE 12.70 170.82 156.30 80.43 69.75 -163.12 I
ILEFT AFT SEAT VERTICAL MAG 0.0757 0.0144 0.029 0.032 0.0112 0.0095 I
I PHASE § 29.42 133.21 63.67 16.46 96.21 -144.62
hUB (TRANSLATIONAL) MAG 2.04 0.0622 0.8474 2.63 0.8213 2.940
PHASE | -26.14 61.68 -65.38 | -109.25 | 144.36 | -104.46
IXFT SEAT F/A MAG 0.0998 0.0172 0.0205 0.0318 0.0027 0.0056
L PHASE 31.79 126.87 22.4 -10.21 153.21 | -145.97
G MAG 0.0804 3.86 33.46 0.0245 7.41 0.0055
PHASE | 33.20 -39.76 26.17 -177.89 | 90.05 166.90
HUB (ROTATIONAL) MAG - 1907 505.36 - 463.3 -
PHASE - 55.75 154.75 - -9.13 -
LOAD MAG 787.9 13099 3844 210.6 4190 215.7
PHASE 158.6 155.3 -52.0 77.7 -22.0 78.9
R ———————————— e |
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Table IV.

Transfer Function Ratio for Maximum Hub Loads

p—
VERTICAL YAW PITCH F/A ROLL LATERAL
LOCATION g's/in- 1 g's/in- | g's/in- | g's/in- | g's/in- § g's/in-
1bx10-3 | 1bx10~-3 | 1bx10-3 | 1bx10-3 | 1bx10-3 | ibx10-3
PILOT SEAT VERTICAL RATIO 1 0.00597 | 0.0033 | 0.00247 § 0.0408 | 0.0193 | 0.0158
PHASE 11.1 161 139 25.4 43.2 64.5
PILOT SEAT LATERAL RATIO | 0.0239 | 0.0063 | 0.00195 { 0.0308 | 0.0487 | 0.0695
PHASE 43.1 168.7 35.3 165 145 148
CO-PILOT SEAT VERTICAL |} RATIO| 0.0113 | 0.0063 ] 0.00401 | 0.0603 | 0.0274 | 0.0473
PHASE 165 55.2 164 13.9 43.7 90.6
RIGHT AFT SEAT VERTICAL | RATIO| 0.109 0.0044 | 0.00630 | 0.164 0.0043 | 0.0125
PHASE 122 35.7 92.1 69.8 110 10.6
AFT SEAT LATERAL RATIO | 0.0100 | 0.0027 | 0.00104 | 0.00237 | 0.0334 | 0.0190
PHASE 146 15.5 152 2.73 91.8 118 I
LEFT AFT SEAT VERTICAL | RATIO | 0.0961 | 0.0046 | 0.00754 | 0.152 0.0267 | 0.0440
PHASE 129 22.1 116 61.2 118 136 I
HUB (TRANSLATIONAL) RATIO 2.59 0.020 0.220 12.5 1.96 13.6 l
PHASE 175 93.62 13.4 173 166 176
AFT SEAT F/A RATIO | 0.127 0.0055 | 0.00533 | 0.151 0.0064 | 0.0259
PHASE 127 28.4 74.4 87.9 175 135
(G RATIO | 0.102 1.245 8.70 0.116 17.6 0.0255
PHASE | 125.4 165 78.2 104 112 88.0
HUB (ROTATIONAL) RATIO - 615.36 131 - 1106 - I
PHASE - 99.6 153 - 12.87 -
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accelerometer was assumed to be equal in magnitude but 180° out of phase.
This assumption was based on the fact that the hub accelerometers should show
only roll and lateral response, and the two vertical accelerometers used for
the pitch test did have this relationship. The very low response levels in the
cg roll and the very high percentage of isolation achieved in the hub lateral
shear test both indicate that roll isolation was well over 90%.

GROUND RESONANCE VIBRATION TEST

In order to ensure aeromechanical stability margins, a ground resonance
shake test was performed at the completion of the six degree-of-freedom
vibration tests. The results of this test (the frequencies, damping, and mode
shapes) were used to update the ground and air resonance stability models
(Be11 computer program DNAWOL). The frequency and damping information
acquired in this test is shown in Table V. The results of the stability
analysis are shown in Figures 40 through 43.

These figures show that greater than 1.6% damping is expected under all
ground and flight conditions. This analysis showed enough margin of safety
that the ground run could proceed with these plots used as a guide line as to
what to expect at various rpm and collective settings.

Pylon Control Coupling

For aeroelastic stability, it is necessary to minimize any possible main
rotor control coupling that may be due to pylon motions. If there were a
closed loop control input feedback that responded to pylon motion, an
aeroelastic stability problem could occur at the pylon pitch or roll modes.
The six degree-of-freedom isolation system spring rates and isolator angles
and attachment points were selected, in part, to create a node in the pylon
pitch and roll mode shapes at a specific waterline. This waterline is the
same as the waterline 1in which the three main rotor control input tube axes
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Table V. Natural Frequencies and Damping From Vibration
Test
NATURAL FREQUENCY HUB G's HERTZ DAMPING %

PITCH PENDULUM MODE 0.

ROLL PENDULUM MODE 1.

T/B VERTICAL (IN AIR) 5.61 2.8
PYLON PITCH (IN AIR) 0.6 7.00 2.2
PYLON PITCH (IN AIR) 0.08 7.22 1.8
PYLON PITCH (IN AIR) 0.01 7.29 1.7
PYLON ROLL (IN AIR) 0.45 5.05 3.2
PYLON ROLL (IN AIR) 0.19 5.13 3.2
PYLON ROLL (IN AIR) 0.023 5.24 2.9
FUSELAGE ROLL (ON GROUND) 0.13 1.56 8.1
FUSELAGE ROLL (ON GROUND) 0.033 1.68 7.2
FUSELAGE ROLL (ON GROUND) 0.0063 1.82 6.9
FUSELAGE PITCH (ON GROUND) 0.28 1.37 10.5 }
FUSELAGE PITCH (ON GROUND) 0.062 1.75 5.1
FUSELAGE PITCH (ON GROUND) 0.042 1.83 3.7
FUSELAGE PITCH (ON GROUND) 0.026 1.87 3.4
FUSELAGE PITCH (ON GROUND) 0.018 1.89 3.3
T/B VERTICAL (ON GROUND) 0.039 4.06 6.6
T/B VERTICAL (ON GROUND) 0.0068 4.25 1.3
PYLON PITCH (ON GROUND) 0.032 6.95 7.5
PYLON PITCH (ON GROUND) 0.018 6.56 7.4
PYLON ROLL (ON GROUND) 0.029 4.55 14.1
PYLON ROLL (ON GROUND) 5. 16.2

SCRUBBING
KID TUBES)




AL PACE 'S
OF POOR QUALITY

N

ORIG!

buidweg pue
sajouanbaJg 3sa3] ayeys buisn sisA|euy Aousnbau4 3dUPUOSIY pUNOU

(HdH) 033d4S dOLlOoH
00S

*Op 34nbL4

00E 52 002
1 AR T

NG HL ™

0S1 001

0'0

ANIE

¥
|

ANYTIANT FATSSIHOTH

1I0M NOTALT

0°S

HILIA4 NOTAA

AN TANT -

ONIINYAAY |
L

N

IINYAQY -
RN R L I B

GO RN E L aNgTd HIYd A14 ON
B R N N

AIN3ND3YS

(ZH)

51




burdweq pue
satouanbau4 3s3] ayeys buisn sitsAleuy burdweqg adueuosay punousy Ty a4nbL4

(HdY) 03345 HO10H

00S 0Sh 00h 0SE 00€ _ose 002 0SI

ANYTINT ONTINYAQH

HJLI

i iy
T0M 399138Nd

0°3

‘9

INTdWEa

‘Y3 %)

(

52




burdweq pue
saiouanbady 359) axeys bBursn siLsAieuy Aduanbaua4 adoueuosSdY ALy *gp d4nbid

(WdH) 033dS HO10H
08 05¢ 002 oSt 001

005 0Sh

" _ F .u..r.Aln - .1:-.(w, ‘04W.0I,| - nl\“\u - B - - -
HOLId 3997384 et
10M 39913SN A g
e ] witiicl ERERE DA - - -
. ANYT 1
HLYd JIL 3AISSIHOIM - |
INUILNT BATSSIHOIY
TI0M NOIAS : : _
HOLId NO7AA = § i - e T

53

D¢

0°h
LIN3NO3ES

03
(29

001



buidweg pue
satouanbady 3s3] 3xeys buisn sisAjeuy Buidweq aoueuosay uLy *cp aanbi 4

(NdH) 033dS HOLOW
00S  oSh 00h 0SE _00E 052 002 051 001

3NYTANT INTONYA i I O D
HOLId 39973 LV R | R RN R D S
Bl Ty v |\ T

*h
INIdwWEd

)

("§3

01

54



intersected (or are focused) on the mast centerline. This geometry of the
control tubes (see Figure 44) results in no control coupling when the pylon
pitches or rolls about this focal point. If excited at a pylon natural
frequency then, there would be no instability due to control coupling. This
approach results in simple design and does not complicate the standard 206L
control system. The resulting control coupling was measured and is shown in
Table VI.

Input Drive Shaft

A measurement of the maximum input drive shaft misalignment angles was made.
This test was performed by rocking the pylon to all extremes of allowable
motion until it contacted the pylon stops. At each extreme, the drive shaft
angle was measured. The results are shown in Figure 45. The allowable angle
for the coupling is 3.5° continuous and 5° transient.

GROUND RUN AND FLIGHT TESTS
Instrumentation

There were two different instrumentation lists used for the ground and
flight tests. The first list (Table VII, column 1) was used for all safety of
flight items during ground run and the envelope expansion phase of the flight
test. At the completion of the envelope expansion, the instrumentation was
switched to those items (Table VII, column 2) necessary to fully document the
performance of the isolation system.

The instrumentation package used during this program consisted of an on-
board 4-track tape recorder, voltage conditioning amplifiers, AM to FM
converters, multiplexing system, and a telemetering system. Three of the four
tracks were muitiplexed, 13 channels of data per track, giving 39 data
channels. The other track was used for voice, tape time code, level code, and
record number. The TM system was used to send data to the Ground Data Center
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Figure 44.

ORIGINAL PAT
OF POOR QUI

Model 206LM Main Rotor and Control Tube Installation



Measured Main Rotor Control Coupling to Pylon Motion

+8.5'/deg

-2.8'/deg

Table VI.
PYLON MOTION COLLECTIVE
PITCH PENDULUM MODE -8.8'/deg | -2.8'/deg
ROLL PENDULUM MODE -2.2'/deg | -4.5'/deg
T/B VERTICAL (IN AIR) +46'/in | -1°22'/in
+COLLECTIVE = THRUST UP
+ PITCH = HUB AFT
+ ROLL = HUB RIGHT

NOTE: Maximum Pitch Angle equals 1.8°, Roll Angle

+3°50'/deg

NOTE 2.6°,
Vertical Travel = 0.875 inches (0.25 inches/g).
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Table VII. Instrumentation List for Flight Test

DESCRIPTION

F/A CYCLIC STICK POSITION

SAFETY OF
FLIGHT

VIBRATION
PERFORMANCE

TESTS

PITCH RATE GYRO

LATERAL CYCLIC STICK

ROLL RATE GYRO

RIGHT HAND AFT PYLON POSITION - VERTICAL

LEFT HAND FORWARD PYLON POSITION - VERTICAL

LEFT HAND AFT PYLON POSITION - VERTICAL

ANGLE OF ATTACK

ANGLE OF SIDE-SLIP

X

X

X

X
MAIN ROTOR RED YOKE BEAM MB STATION 3.5 X X
MAIN ROTOR MAST TORQUE X X
MAIN ROTOR MAST PERPENDICULAR BENDING STATION 16.0 X X
MAIN ROTOR MAST PARALLEL BENDING STATION 16.0 X X
RIGHT HAND PYLON F/A POSITION X X
LATERAL PYLON POSITION X X
MAIN ROTOR RED PITCH LINK LOWER AXIAL X X
MAIN ROTOR RED YOKE CHORD MB STATION 3.5 X X
MAIN ROTOR RED BLADE LEAD-LAG POSITION X X 4
LEFT HAND PYLON POSITION - F/A X X |
MAIN ROTOR RED BLADE ANGLE X
LATERAL ACCELERATION AT AFT HAT RACK X X |
YAW RATE GYRO X |
YAW ATTITUDE GYRO X |
PITCH ATTITUDE GYRO X |
ROLL ATTITUDE GYRO X |
COLLECTIVE STICK POSITION X |
PEDAL POSITION X |
RIGHT HAND FORWARD PYLON POSITION - VERTICAL X X

X

X

X

X

X

X

PILOT SEAT VERTICAL ACCELERATION
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Table VII. Instrumentation List for Flight Test (Continued)

DESCRIPTION

PILOT SEAT LATERAL ACCELERATION

SAFETY OF
FLIGHT

VIBRATION
PERFORMANCE
TESTS

CO-PILOT SEAT VERTICAL ACCELERATION

VERTICAL ACCELERATION LEFT HAND PASSENGER SEAT

VERTICAL ACCELERATION RIGHT HAND PASSENGER SEAT

MAIN ROTOR MAST PARALLEL BENDING STATION 29.7

AIRSPEED

CG LOAD FACTOR

X[ X| X X| X]| X]| X

F/A ACCELERATION AT AFT PASSENGER SEAT CENTERLINE

LEFT HAND CYCLIC BOOST TUBE AXIAL

RIGHT HAND CYCLIC BOOST TUBE AXIAL

MAIN ROTOR HUB LATERAL ACCELERATION

MAIN ROTOR HUB F/A ACCELERATION

LATERAL ACCELERATION AT AFT PASSENGER SEAT ARM

RIGHT HAND FORWARD LIVE ISOLATOR AXIAL POSITION

RIGHT HAND AFT LIVE ISOLATOR AXIAL POSITION

LEFT HAN) FORWARD LIVE ISOLATOR AXIAL POSITION

LEFT HAND AFT LIVE ISOLATOR AXIAL POSITION

RIGHT HAND F/A LIVE ISOLATOR AXIAL POSITION

LEFT HAND F/A LIVE ISOLATOR AXIAL POSITION

RIGHT HAND LATERAL PYLON POSITION - VERTICAL

MAIN ROTOR HUB VERTICAL ACCELERATION

RIGHT HAND TRANSMISSION LATERAL ACCELERATION

FORWARD TRANSMISSION F/A ACCELERATION

90 DEGREE GEARBOX VERTICAL ACCELERATION

90 DEGREE GEARBOX LATERAL ACCELERATION

IELEVATOR CENTERLINE VERTICAL ACCELERATION

IFLEVATOR CENTERLINE LATERAL ACCELERATION

CG F/A ACCELERATION

XIEXI XX XXX XX XX X1 XXX X] X]X| X] X[|X]|X




for on-line monitoring of the one track of data (13 channels) that was
considered the most critical for safety of flight. Additional flight
instruments were added to the instrument panel for control position indication
and load factor meter for maneuvers. These instruments are shown in Figure 46.

PROCEDURE
Ground runs and flight runs were performed to evaluate ground and air
resonance, isolation system performance, handling qualities, and demonstration
rides. A flight log of all runs is given in Table VIII.
Ground Run
The ground run was performed to verify that the aircraft would be free
from any aeromechanical instability throughout all operational conditions on
the ground. For this test the following procedure was followed to determine
stability margins. For each rpm tested, the following sequence of excitations
of the rotor was performed starting at flat pitch:
a. A longitudinal pulse at the cyclic stick.

b. A lateral pulse at the cycliic stick.

c. A counterclockwise stir of the cyclic stick at the best frequency to
excite the first in-plane rotor mode.

d. An increase in collective to 40% and a repetition of steps 1
through 3.

Each record was analyzed by a complex exponential solution algorithm in Bell's

VIBRATEC Data Analysis System to determine the rotor response frequency and
the percentage of critical damping from the yoke chord bending strain gage.
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Air Stability

At the compietion of the ground stability testing no test conditions
were found that exhibited damping of less than 3.4% critical. After reviewing
the data, a safety of flight release was granted and the air stability testing
commenced. The aircraft was ballasted to 3500 1b GW and neutral cg for the
initial air resonance testing. A similar test procedure to the ground
resonance tests was followed for the air resonance testing, and listed below,
starting in hover.

a. Excite the rotor with a longitudinal cyclic pulse.
b. Excite the rotor with a lateral cyclic pulse.

c. Excite the rotor at its first inplane natural frequency with a
counterclockwise cyclic stir.

d. Repeat step c with a higher magnitude input.

If the rotor response showed over 2% critical damping in steps a through
¢ and greater damping with the higher magnitude input of step d, then the
airspeed was increased 10 kn and steps a through d were repeated.

This process was repeated until Vpe airspeed was achieved. During each
step of this testing, the critical track of data was telemetered to the Ground
Data Center and monitored on-line for either load or stability problems.
Bell's Data Analysis Computer Program VIBRATEC was used to monitor the rotor
stability. This program enabled the test director to determine the percentage
of critical damping in the rotor system within approximately 10 seconds of the
compietion of each record, and progress to the next condition with very Tittle
delay. At the completion of the airspeed sweep to Vne, various maneuvers were
investigated using the same procedure. These maneuvers included: right and
left turns to 2.5¢ at 60, 100, and 120 kn; autorotation at 60 and 80 kn; max
power climbs at 60, 80, and 100 kn; and pushovers and pullups at 60, 80, and
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100 kn. At the completion of these tests, there were no flight conditions
found that exhibited 1less than 4% critical damping. Therefore, the
instrumentation was changed from the safety of flight instrumentation to the
isolation system performance 1ist shown in Table VII , Column 2.

Isolation System Performance Flights
To determine the performance of the isolation system, the 1ist of flight

conditions shown in Table IX was flown for the following gross-weight/cg
combinations:

Gross Weight Center of Gravity
3,500 124
4,100 121
3,000 127
4,100 124

Figure 47 shows the gross Weight, center of gravity envelope for the
206LM and the relationship of the flight conditions flown to the allowable
GW/cg envelope. From Table VIII, flights 6C, 8A, 8B, and 9A were the flight
conditions flown for the isolator performance investigation.

FLIGHT TEST RESULTS

The results of the flight test have been presented in a number of
formats. Plots of 4/rev vibration level vs. airspeed for each seat and main
rotor hub accelerometer are presented in Figure Bl of Appendix B. These plots
include hover and dive flight conditions. Plots of 4/rev vibration level for
forward, rearward, right sideward, and left sideward flight up to 30 kn are
presented in Figure B2 . Plots of 4/rev vibration levels vs mean cg g's for

right and left turns, pushups and pushovers are presented in Figures B3
through B5.

These data show that for all GW/cg loadings, the pilot and copilot seat
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Table IX.

Vibration Performance Flights

FLIGHT CONDITION

AIRSPEED

Flight Conditions Flown for the

HOVER 1.0
LEVEL FLIGHT (PACED ON RUNWAY) 1.0
LEVEL FLIGHT (PACED ON RUNWAY) 10 1.0
LEVEL FLIGHT (PACED ON RUNWAY) 15 1.0 |
LEVEL FLIGHT (PACED ON RUNWAY) 20 .o |
LEVEL FLIGHT (PACED ON RUNWAY) 25 1.0 |
LEVEL FLIGHT (PACED ON RUNWAY) 30 1.0
LEVEL FLIGHT (1500 FT. ALT.) 40 1.0 I
LEVEL FLIGHT (1500 FT. ALT.) 50 1.0 |
LEVEL FLIGHT (1500 FT. ALT.) 60 1.0
LEVEL FLIGHT (1500 FT. ALT.) 70 1.0
LEVEL FLIGHT (1500 FT. ALT.) 80 1.0
LEVEL FLIGHT (1500 FT. ALT.) 90 1.0
LEVEL FLIGHT (1500 FT. ALT.) 100 Lo |
LEVEL FLIGHT (1500 FT. ALT.) 110 1.0
LEVEL FLIGHT (1500 FT. ALT.) 120 1.0
LEVEL FLIGHT (1500 FT. ALT.) VH 1.0 |
LEVEL FLIGHT (1500 FT. ALT.) VNE 1o |
TURNS (RIGHT AND LEFT) 60 1.5 |
TURNS (RIGHT AND LEFT) 60 2.0 |
TURNS (RIGHT AND LEFT) 60 2.5 |
TURNS (RIGHT AND LEFT) 95 1.5 |
TURNS (RIGHT AND LEFT) 95 2.0 |
TURNS (RIGHT AND LEFT) 95 2.5
TURNS (RIGHT AND LEFT) VH 1.5 |
TURNS (RIGHT AND LEFT) VH 2.0 |
TURNS (RIGHT AND LEFT) VH 2.5
PULLUP VNE 1.5 I
PULLUP VNE 2.0 |
PUSHOVER 95 0.5
PUSHOVER 95 0.75 I
AUTOROTATION 60 1.0

lAUTOROTATION 80 1.0 I

e
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4/rev vibration levels in the transition region (15 to 25 kn), which is
traditionally the highest vibration level, did not exceed 0.056g 1in any
direction.

Similarly, the aft seats show no 4/rev levels above 0.10g. A comparison
of the hub 4/rev 1levels (Figure Bl) shows that the highest rotor input
vibration levels are in the transition region, and that the highest 4/rev
cabin levels are at high speed. This effect is explained later in this
section.

The plots of 4/rev vibration level vs cg mean g's for the maneuvers show
essentially the same levels at different mean g's as are achieved at 1.0 g,
except when the maneuver approaches 2.5g's. The 1isolation system was
originally designed for -0.5¢ to 3.0g's. However, during the final turning
phase of the individual isolators (Reference 1), the spring rate of the
isolators had to be reduced to achieve optimum tuning. This spring rate
reduction resulted in two isolators bottoming at approximately 2.5g's instead
of 3.0g's as initially designed. The two isolators that bottom out at 2.5¢'s
are the right forward and left aft units. These two units bottom as a result
of the combination of torque and 1ift, which adds a steady strain in the same
direction on these two isolators. Torque subtracts from 1ift on the right aft
and left forward isolators. The result of this bottoming at 2.5g's is an
increase in vibration levels in the cabin up to 0.17g at the aft seat fore-
and-aft accelerometer. Although these vibration levels were high enough to be
perceived by the crew, the levels were still significantly below the levels on
the baseline helicopter. Additionally, this bottoming resulted in no audible
sounds to the crew and only by detailed investigation of the data after the
flight test was completed was this bottoming detected.

The TRIS proof-of-concept vibration surveys demonstrated a significant

improvement in ride quality throughout the flight envelope investigated.
Favorable comments were received from all who flew or rode in the aircraft.
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Non-Main Rotor Hub Induced Vibration

Due to the nature of the helicopter, there are other sources of main
rotor 4/rev besides the main rotor hub loads. These other sources include:
main rotor downwash on the cabin roof, elevator and tail boom causing vertical
vibration, and rotor downwash on the elevator endplates, vertical fin, and
tail rotor disc causing lateral vibration.

In order to determine the true performance of the pylon isolation system
in a flight test program, it is necessary to separate the cabin vibration
level produced by the main rotor hub loads from the vibration produced from
these other sources. This is a difficult task and is beyond the scope of this
project. However, careful study of the shake test and flight test data
reveals a reliable conclusion as to the magnitude and effect of the other
sources.

By comparing the level flight airspeed plots (Figure Bl) it can be seen
that the three main rotor hub vibration levels all peak at approximately 20 kn
durihg transitional flight. The hub vibration levels are 3 to 4 times the
levels at the maximum level flight airspeed. Since the transfer functions
from shake test show that the cabin vibration levels are all much less than
10% of the hub g's for all 6 degrees-of-freedom, it would follow that this
relationship would hold true also in flight test. This does hold true in
transitional flight where the hub vibration levels are over 1.0g in all
directions and all the cabin seat accelerometers are under 0.lg, showing
better than 90% isolation. At 20 kn, the aircraft is not moving fast enough
to cause rotor downwash to impinge on the fin and tailrotor. Therefore, very
1ittle additional cabin vibration is produced from airloads on the tail.
However, this is not true at high speed.

An examination of the VH and Vpe data show that although the hub
vibration levels are much lower at high speed than at 20 kn, this is not true
with the cabin vibration levels. A review of the 90° gearbox vertical and
lateral accelerometers (Figure Bl) show the cause of this effect. The 90°
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gearbox accelerometers show a sudden increase in main rotor 4/rev vibration
levels starting at about 120 kn, increasing to over 0.5g vertical and almost
1.0g lateral. This sudden increase in vibration level is caused by main rotor
downwash on the elevator, tailrotor and fin. The sudden increase in the 90°
gearbox Tlateral causes the pilot seat lateral acceleration to increase
proportionally and the increase in the 90° gearbox vertical causes the cabin
vertical accelerometers to increase. Since there are no downwash effects that
cause F/A vibration, the cabin cg F/A acceleration responds directly and
proportionally to the main rotor hub accelerations through the isolation
system.

Isolation System Performance

It can be seen from the analysis above that the isolation system
performance during flight test can only be directly determined in the
transition airspeed region where 4/rev excitations from other sources are
small, since the cabin vibrations are dominated at high speed by excitations
from sources other than the pylon isolation system.

In the transition region (shown in the airspeed sweep plots, Figure Bl
and the rearward and sideward flight plots, Figure B2), it can be seen that
all the crew accelerometers are below 0.05¢ for all GW/cg's flown showing over
95% isolation. For the same conditions, the aft seats are below 0.10g,
showing approximately 90% isolation.

Hand1ling Qualities

During the initial test flight with the six degree-of-freedom configured
aircraft, the pilot reported significantly improved handling characteristics
in the TRIS configured Model 206LM compared with any previous Model 206LM
configuration. The improvement in handling characteristics was due in part to
the standard Model 206L-1 focused pylon flight controls installation, which
differed from the previous 206LM coupled main rotor control installation.
Quantitative handling qualities information was acquired under separate IR&D
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funding in an attempt to document the excellent handling characteristics of
this light four-bladed configured helicopter. Following completion of the
TRIS contracted effort vibration survey flights, additional testing was begun
for purposes of acquiring static and dynamic handling qualities data.

Handling qualities evaluations were conducted at both heavy gross
weight/forward cg and light gross weight/aft cg. Cyclic and pedal step inputs
and pulses were both conducted during level flight (at 60 and 100 knots),
descents (60 knots), and climbs (60 knots). In addition, step inputs were
conducted in hover. Static lateral directional stability was quantified in
level flight (60 and 100 knots). The aircraft static longitudinal stability
was conducted with trim airspeeds of 106 knots in level flight and 60 knots in
climb and autorotation.

Handling qualities of the 206LM helicopter, serial number 45269, as
configured during the TRIS program were excellent. This improvement compared
to previous 206LM configurations is due in part to the fixed control geometry
of the cyclic and collective controls as they relate to the TRIS pylon motion.

Aircraft response to control step inputs and pulses reflected neutral to
slightly positive damping of the longitudinal phugoid at 100 knots and time to
double amplitude in excess of 20 seconds at 60 knots at aft cg/light gross
weight. Lateral aircraft response to step inputs was generally a slow rolling
spiral. Static longitudinal and static lateral directional stick gradients
were slightly positive at aft cg. Dihedral was siighty positive at aft cg as
well.

The TRIS proof-of-concept demonstration was an excellent example of a
light four-bladed helicopter with low vibration levels and improved handling
qualities. Although the reasons for the reduced vibration levels are
understood, the reasons for the improved handling qualities are not fully
understood. The mechanics of the improved handling qualities should be
pursued for purposes of applying the technology to current model helicopters.
The TRIS flight test program demonstrated that a non-SCAS four-blade

72



helicopter with IFR handling qualities and low vibration levels is within
existing technology.

BASELINE HELICOPTER COMPARISON

A comparison between the TRIS 1installed helicopter and the same
helicopter with its baseline isolation system installed was performed. It
should be understood that the latest configuration of the baseline helicopter
had a softly sprung (soft rubber springs) pylon isolation system called
SAVITAD (Reference 2) that was developed in the late 1970s to achieve a good
ride quality. Tests of this soft system are shown in Figures B6 and B7.

A comparison of the data from both the soft system flights and the TRIS
data in the 1low speed transition region (where cabin vibration is not
influenced by rotor downwash on the empennage surfaces) shows that the TRIS
approach reduces vibration by a factor of 3 or more over the SAVITAD System.

The high speed cabin vibration data of the SAVITAD system shows the same
effect of the rotor downwash on the fin, elevator, and tail rotor as was shown
with the TRIS System. Both systems show that the higher vibration levels at
VH are dominated by rotor downwash effects and not hub loads.

By comparing the transition airspeed region shown in Figure B2 for the
TRIS installation and Figure B7 for the baseline configuration, it can be seen
that the greatest improvement in ride achieved by the TRIS installation occurs
at the airspeed that produces the highest hub loads. For example, the pilot
seat lateral vibration levels for rearward flight at 20 kn are reduced from
0.24g on the baseline aircraft to only 0.023g on the TRIS installation.
Similar reductions are seen in the copilots seat data. The aft seat vibration
levels are not reduced as dramatically, but still they are reduced by a factor
of two.
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Comparison to Focal Pylon

Many BHTI helicopters incorporate a Focal Pylon (Reference 3) isolation
system to achieve isolation of inplane rotor hub loads; therefore, a second
comparison was also made to the baseline helicopter when it was first flown
with a Focal Pylon isolation system. The Focal Pylon installation only
isolates hub pitch and roll moments and does not isolate vertical hub shears
at all.

Although 1limited test data were available, a comparison between the
Focal Pylon isolation system (two degrees-of-freedom) and the TRIS
installation (six degrees-of-freedom) shows the real potential of total rotor
isolations. Figure B8 shows the comparison at the pilot seat vertical, and
the comparison of the right aft seat vertical. These comparisons show a
reduction at 20 kn of 77% at the pilot seat and 67% at the right aft seat.

RELIABILITY AND MAINTAINABILITY ANALYSIS
The baseline for the reliability and maintainability analysis was an
imaginary rigid link mount between the transmission case and the helicopter
roof mounting plane. The reliability of the LIVE isolation system was then
calculated and compared to this baseline rigid mount.
The analysis was hindered by the following limitations:

a. There were no field data available on the LIVE system.

b. There were only limited data available on the Model 206LM flight
test helicopter.

¢. There were no production isolators available for analysis. Test

unit design drawings were used, in conjunction with verbal
descriptions of what the production unit would look like.
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The prediction was therefore tested against standard designs as a comparison
check to ensure validity of the results and to guide the accuracy of the
starting assumptions.

Methodology

A top-down approach was used to obtain the overall system reliability
prediction. Several helicopter models were examined to determine what
correlation existed between failure rates, maintenance man-hours per flight-
hour (MMH/FH), and rotor head type (semirigid or fully articulated). The
results are shown in Table X.

TABLE X.  COMPARISON OF SYSTEM RELIABILITY OF DIFFERENT HELICOPTER MODELS

Max Weight Pylon Isolation Total - Main Rotor
Model (1b) Failure Rate MMH/FH Failure Rate MMH/FH
CH-53E 69,700 N/A N/A 138,179 1.616
CH-53D 40,174 N/A N/A 58,909 1.597
CH-46D 21,000 N/A N/A 63,432* 0.88
UH-1N 11,200 5,827 0.558 37,999 0.344
TH57A 3,200 399 0.00171 6,105 0.0222
THS78B 3,200 117 0.000438 3,073 0.008589
OH-5801 4,500 637 0.000050 11,362 0.010353

*126,865+2 for two main rotor systems.
tPrediction from Bell Report 406-949-111.

N/A - Not applicable on these aircraft

A bottom-up analysis using piece-part predictions previously used in a
calculation of OH-58D reliability was utilized to determine reliability of the
LIVE and rigid-mount systems. The results obtained were then compared to the
system reliability prediction using a top-down approach as a test of the
correlations. Details of the bottom-up analysis are presented in Table XI.
Failure modes of the LIVE and solid 1ink systems are listed in Table XII.
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TABLE XI. BOTTOM-UP RELIABILITY ANALYSIS

Qty Item Failure Rate t
6 LIVE isolator
Outer cylinder 10
Inner cylinder 12
Inner/outer attaching bolts (2) 4
Elastomer rubber insert 10
Mercury fluid 10
Attaching bearings (one at each end) 2
Attaching nuts/bolts (one set at each end) 2
Outer wrap bag 30
Bag clamps (one at each end) 8
Bag fluid detector windowglass (or
comparable device) 40
128
6 x 128 = 768
9 Mounting brackets and hardware*
(transmission and roof) 16
784
LIVE Isolator System: A = 784 x 10-6
6 Solid 1ink mount 22
Attaching bearings (2) 2
Attaching hardware _2
26
6 x 26 = 156
9 Mounting brackets and hardware*
(transmission and roof) 16
172
Solid Link Mounting System: A =172 x 10-6

*Same for LIVE and solid link systems.
{+Failures per million flight hours.
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TABLE XII.  FAILURE MODES

Item

Failure Mode

LIVE System

Attaching bolts
Elastomer rubber insert

Inner/outer cylinder
Mercury fluid

Outer wrap (bag)

Quter bag clamps
Outer bag fluid detector
Mounting brackets

Attaching bolts/bearings
(mounting hardware)

Solid Link System

Links

Attaching bearings &
hardware

Mounting brackets

Loose, missing

Damaged by overheating, contamination,
etc.

Damaged by dents, cracks, breaking, etc.

Incorrect fluid level (overhaul or factory
defect), fluid leak

Damaged or deteriorated by ripping,
contamination, drying out, etc.

Loose, missing, damaged
Broken, damaged, etc.

Broken, cracked, corroded, or otherwise
damaged

Loose, missing

Bent, broken, etc.
Loose, broken, etc.

Broken, cracked, corroded, or otherwise
damaged
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The MMH/FH for the two systems is as follows:

Organizational Depot
Solid 1ink system 0.000038 -
LIVE isolator system 0.000450 0.000759

The organizational level for the LIVE system includes an allowance for rotor
vibration isolation troubleshooting. The depot level covers maintenance to
overhaul LIVE units. The result was A= 784 x 10-6 for reliability of the LIVE
isolation system and A= 172 x 10-6 for the baseline rigid mount. The LIVE
isolation system reliability prediction is fairly compatible with that for the
state-of-the-art impedance controlled isolation system used on the OH-58D.
The overall rotor head reliability is significantly better than a rigid-
mounted, complex, fully articulated rotof system using hub absorbers to
achieve a compatible low-vibration ride.

CONCLUSIONS

The following conclusions are apparent from the analysis of the ground
vibration test and the flight test of the TRIS installation on the Model
206LM.

a. A six degree-of-freedom pylon isolation system can be made to
isolate well over 90% of the main rotor hub loads.

b. The resulting levels of vibration at the crew stations (from the
remaining percent of hub shears and moments that are not isolated)
are below human perception levels.

c. With the TRIS installed, there are 4/rev vibration sources other
than hub loads that dominate the resulting cabin 4/rev levels at
high speed and they must be reduced before any additional reductions
in cabin vibration levels can be achieved at these speeds.
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The highest vibration 1levels at the crew stations during
transitional flight measured less than 0.06g, and were imperceptible
by the crew. Vibration criteria this low must be re-evaluated with
respect to cost, weight, and mission efficiency.

This TRIS installation had a weight penalty of 69.57 1b, (see
Reference 1) less than 1.7% of the maximum gross weight of 4100 1b.
This installation was designed to be very adjustable and therefore
much heavier than a production system need be. By manufacturing the
LIVE units without adjustability and using 1ight weight materials,
(stainless steel was used for the test units) less than 1.0% weight
penalty is easily achievable.

The objective of this program (6 degrees-of-freedom isolated over
90% in flight) has been met with the TRIS installation. However,
the desired goal of less than 0.05g throughout the level flight
envelope was not met due to other airframe excitations that dominate
the vibrations at high speed.

By providing proper main rotor control coupling, a non-SCAS four-
bladed helicopter with excellent hand1ing qualities can be achieved.

Although yaw isolation was provided with the TRIS approach, analysis
and laboratory tests indicate that on a helicopter with a
torsionally soft mast an excellent ride could be obtained without
yaw isolation.
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Figure B6. 4/Rev Vibration Level vs Airspeed for Baseline Helicopter with
Soft Pylon (Continued)
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